MongoDB
 sql >> Baza danych >  >> NoSQL >> MongoDB

mongodb grupuje wartości według wielu pól

Podsumowanie TLDR

We współczesnych wydaniach MongoDB możesz to zrobić metodą brute force za pomocą $slice tuż przy podstawowym wyniku agregacji. W przypadku „dużych” wyników zamiast tego uruchom zapytania równoległe dla każdej grupy (lista demonstracyjna znajduje się na końcu odpowiedzi) lub poczekaj na rozwiązanie SERVER-9377, co pozwoliłoby na „ograniczenie” liczby elementów do $push do tablicy.

db.books.aggregate([
    { "$group": {
        "_id": {
            "addr": "$addr",
            "book": "$book"
        },
        "bookCount": { "$sum": 1 }
    }},
    { "$group": {
        "_id": "$_id.addr",
        "books": { 
            "$push": { 
                "book": "$_id.book",
                "count": "$bookCount"
            },
        },
        "count": { "$sum": "$bookCount" }
    }},
    { "$sort": { "count": -1 } },
    { "$limit": 2 },
    { "$project": {
        "books": { "$slice": [ "$books", 2 ] },
        "count": 1
    }}
])

Podgląd MongoDB 3.6

Nadal nie działa SERVER-9377, ale w tej wersji $lookup umożliwia nową „nieskorelowaną” opcję, która przyjmuje "pipeline" wyrażenie jako argument zamiast "localFields" i "foreignFields" opcje. Pozwala to następnie na "samozłączenie" z innym wyrażeniem potoku, w którym możemy zastosować $limit w celu zwrócenia wyników „najlepszych n”.

db.books.aggregate([
  { "$group": {
    "_id": "$addr",
    "count": { "$sum": 1 }
  }},
  { "$sort": { "count": -1 } },
  { "$limit": 2 },
  { "$lookup": {
    "from": "books",
    "let": {
      "addr": "$_id"
    },
    "pipeline": [
      { "$match": { 
        "$expr": { "$eq": [ "$addr", "$$addr"] }
      }},
      { "$group": {
        "_id": "$book",
        "count": { "$sum": 1 }
      }},
      { "$sort": { "count": -1  } },
      { "$limit": 2 }
    ],
    "as": "books"
  }}
])

Innym dodatkiem jest oczywiście możliwość interpolacji zmiennej przez $expr używając $match aby wybrać pasujące elementy w "sprzężenie", ale ogólne założenie to "potok w potoku", w którym zawartość wewnętrzną można filtrować według dopasowań z elementu nadrzędnego. Ponieważ oba są "rurociągami" same w sobie, możemy $limit każdy wynik osobno.

Byłaby to kolejna najlepsza opcja do uruchamiania zapytań równoległych i właściwie byłaby lepsza, gdyby $match mogli i mogli używać indeksu w przetwarzaniu „podpotoku”. Więc co nie używa "limitu do $push ” jak pyta przywoływany problem, faktycznie dostarcza coś, co powinno działać lepiej.

Oryginalna treść

Wygląda na to, że natknąłeś się na główny problem „N”. W pewnym sensie Twój problem jest dość łatwy do rozwiązania, ale nie z dokładnymi ograniczeniami, o które prosisz:

db.books.aggregate([
    { "$group": {
        "_id": {
            "addr": "$addr",
            "book": "$book"
        },
        "bookCount": { "$sum": 1 }
    }},
    { "$group": {
        "_id": "$_id.addr",
        "books": { 
            "$push": { 
                "book": "$_id.book",
                "count": "$bookCount"
            },
        },
        "count": { "$sum": "$bookCount" }
    }},
    { "$sort": { "count": -1 } },
    { "$limit": 2 }
])

Teraz otrzymasz taki wynik:

{
    "result" : [
            {
                    "_id" : "address1",
                    "books" : [
                            {
                                    "book" : "book4",
                                    "count" : 1
                            },
                            {
                                    "book" : "book5",
                                    "count" : 1
                            },
                            {
                                    "book" : "book1",
                                    "count" : 3
                            }
                    ],
                    "count" : 5
            },
            {
                    "_id" : "address2",
                    "books" : [
                            {
                                    "book" : "book5",
                                    "count" : 1
                            },
                            {
                                    "book" : "book1",
                                    "count" : 2
                            }
                    ],
                    "count" : 3
            }
    ],
    "ok" : 1
}

Różni się to od tego, o co prosisz, podczas gdy otrzymujemy najlepsze wyniki dla wartości adresu, podstawowy wybór „książek” nie jest ograniczony tylko do wymaganej liczby wyników.

Okazuje się to bardzo trudne do wykonania, ale można to zrobić, chociaż złożoność rośnie wraz z liczbą elementów, które musisz dopasować. Aby było to proste, możemy zachować to co najwyżej 2 mecze:

db.books.aggregate([
    { "$group": {
        "_id": {
            "addr": "$addr",
            "book": "$book"
        },
        "bookCount": { "$sum": 1 }
    }},
    { "$group": {
        "_id": "$_id.addr",
        "books": { 
            "$push": { 
                "book": "$_id.book",
                "count": "$bookCount"
            },
        },
        "count": { "$sum": "$bookCount" }
    }},
    { "$sort": { "count": -1 } },
    { "$limit": 2 },
    { "$unwind": "$books" },
    { "$sort": { "count": 1, "books.count": -1 } },
    { "$group": {
        "_id": "$_id",
        "books": { "$push": "$books" },
        "count": { "$first": "$count" }
    }},
    { "$project": {
        "_id": {
            "_id": "$_id",
            "books": "$books",
            "count": "$count"
        },
        "newBooks": "$books"
    }},
    { "$unwind": "$newBooks" },
    { "$group": {
      "_id": "$_id",
      "num1": { "$first": "$newBooks" }
    }},
    { "$project": {
        "_id": "$_id",
        "newBooks": "$_id.books",
        "num1": 1
    }},
    { "$unwind": "$newBooks" },
    { "$project": {
        "_id": "$_id",
        "num1": 1,
        "newBooks": 1,
        "seen": { "$eq": [
            "$num1",
            "$newBooks"
        ]}
    }},
    { "$match": { "seen": false } },
    { "$group":{
        "_id": "$_id._id",
        "num1": { "$first": "$num1" },
        "num2": { "$first": "$newBooks" },
        "count": { "$first": "$_id.count" }
    }},
    { "$project": {
        "num1": 1,
        "num2": 1,
        "count": 1,
        "type": { "$cond": [ 1, [true,false],0 ] }
    }},
    { "$unwind": "$type" },
    { "$project": {
        "books": { "$cond": [
            "$type",
            "$num1",
            "$num2"
        ]},
        "count": 1
    }},
    { "$group": {
        "_id": "$_id",
        "count": { "$first": "$count" },
        "books": { "$push": "$books" }
    }},
    { "$sort": { "count": -1 } }
])

W ten sposób otrzymasz 2 najlepsze „książki” z dwóch pierwszych wpisów „adresów”.

Ale za moje pieniądze pozostań przy pierwszej formie, a następnie po prostu "pokrój" elementy tablicy, które są zwrócone, aby wziąć pierwsze "N" elementów.

Kod demonstracyjny

Kod demonstracyjny jest odpowiedni do użycia z aktualnymi wersjami LTS NodeJS z wersji v8.xi v10.x. Dotyczy to głównie async/await składni, ale w ogólnym przepływie nie ma nic, co miałoby takie ograniczenia i dostosowuje się z niewielkimi zmianami do zwykłych obietnic lub nawet z powrotem do zwykłej implementacji wywołań zwrotnych.

index.js

const { MongoClient } = require('mongodb');
const fs = require('mz/fs');

const uri = 'mongodb://localhost:27017';

const log = data => console.log(JSON.stringify(data, undefined, 2));

(async function() {

  try {
    const client = await MongoClient.connect(uri);

    const db = client.db('bookDemo');
    const books = db.collection('books');

    let { version } = await db.command({ buildInfo: 1 });
    version = parseFloat(version.match(new RegExp(/(?:(?!-).)*/))[0]);

    // Clear and load books
    await books.deleteMany({});

    await books.insertMany(
      (await fs.readFile('books.json'))
        .toString()
        .replace(/\n$/,"")
        .split("\n")
        .map(JSON.parse)
    );

    if ( version >= 3.6 ) {

    // Non-correlated pipeline with limits
      let result = await books.aggregate([
        { "$group": {
          "_id": "$addr",
          "count": { "$sum": 1 }
        }},
        { "$sort": { "count": -1 } },
        { "$limit": 2 },
        { "$lookup": {
          "from": "books",
          "as": "books",
          "let": { "addr": "$_id" },
          "pipeline": [
            { "$match": {
              "$expr": { "$eq": [ "$addr", "$$addr" ] }
            }},
            { "$group": {
              "_id": "$book",
              "count": { "$sum": 1 },
            }},
            { "$sort": { "count": -1 } },
            { "$limit": 2 }
          ]
        }}
      ]).toArray();

      log({ result });
    }

    // Serial result procesing with parallel fetch

    // First get top addr items
    let topaddr = await books.aggregate([
      { "$group": {
        "_id": "$addr",
        "count": { "$sum": 1 }
      }},
      { "$sort": { "count": -1 } },
      { "$limit": 2 }
    ]).toArray();

    // Run parallel top books for each addr
    let topbooks = await Promise.all(
      topaddr.map(({ _id: addr }) =>
        books.aggregate([
          { "$match": { addr } },
          { "$group": {
            "_id": "$book",
            "count": { "$sum": 1 }
          }},
          { "$sort": { "count": -1 } },
          { "$limit": 2 }
        ]).toArray()
      )
    );

    // Merge output
    topaddr = topaddr.map((d,i) => ({ ...d, books: topbooks[i] }));
    log({ topaddr });

    client.close();

  } catch(e) {
    console.error(e)
  } finally {
    process.exit()
  }

})()

books.json

{ "addr": "address1",  "book": "book1"  }
{ "addr": "address2",  "book": "book1"  }
{ "addr": "address1",  "book": "book5"  }
{ "addr": "address3",  "book": "book9"  }
{ "addr": "address2",  "book": "book5"  }
{ "addr": "address2",  "book": "book1"  }
{ "addr": "address1",  "book": "book1"  }
{ "addr": "address15", "book": "book1"  }
{ "addr": "address9",  "book": "book99" }
{ "addr": "address90", "book": "book33" }
{ "addr": "address4",  "book": "book3"  }
{ "addr": "address5",  "book": "book1"  }
{ "addr": "address77", "book": "book11" }
{ "addr": "address1",  "book": "book1"  }


  1. Redis
  2.   
  3. MongoDB
  4.   
  5. Memcached
  6.   
  7. HBase
  8.   
  9. CouchDB
  1. MongoDB $dateFromString

  2. Przechowywanie hierarchii katalogów w magazynie danych klucz-wartość

  3. Nie można uruchomić MongoDB jako usługi

  4. Wypełnij zagnieżdżoną tablicę mangusty

  5. MongoDB:Pobierasz tylko dokumenty utworzone w ciągu ostatnich 24 godzin?