Map Reduce umożliwia przetwarzanie nazwanych kluczy, ale agregacja jest sposobem na wydajne zapytania.
Musisz modelować dane jako tablicę osadzonych dokumentów dla struktury agregacji.
Dałam ci dwie opcje. Możesz je przetestować pod kątem swojego zbioru danych i zobaczyć, który z nich działa lepiej dla Ciebie.
Coś jak
"v":[
{
"minute":1,
"seconds":[
{
"second":54,
"data":{
"field1":7.373158,
"entry_id":4635,
"field3":0.19,
"field2":88
}
}
]
},
{
"minute":2,
"seconds":...
}
]
Teraz możesz łatwo wyszukiwać artykuły, które mają odczyt czujnika:"field1">2.
db.col.aggregate(
[{"$match":{"v.seconds.data.field1":{"$gt":2}}},
{"$unwind":"$v"},
{"$match":{"v.seconds.data.field1":{"$gt":2}}},
{"$unwind":"$v.seconds"},
{"$match":{"v.seconds.data.field1":{"$gt":2}}},
{"$project":{"data":"$v.seconds.data"}}]
)
Alternatywnie możesz podzielić dokumenty na minuty. Coś jak
"v":[
{
"second":1,
"data":{
"field1":7.373158,
"entry_id":4635,
"field3":0.19,
"field2":88
}
},
{
"second":2,
"data":...
}
]
Możesz teraz wykonać zapytanie takie jak ( z indeksem na v.data.field1 )
db.col.aggregate(
[{"$match":{"v.data.field1":{"$gt":2}}},
{"$unwind":"$v"},
{"$match":{"v.data.field1":{"$gt":2}}},
{"$project":{"data":"$v.data"}}]
)
Możesz zapytać o pozycje, które mają odczyt czujnika:"field1">2 i "field3">5
Korzystanie z pierwszej struktury
db.col.aggregate(
[{"$match":{"v":{"$elemMatch":{"seconds": {$elemMatch:{"field1":{$gt":2},"field3":{$gt":5}}}}}}},
{"$unwind":"$v"},
{"$match":{"v.seconds": {$elemMatch:{"field1":{$gt":2},"field3":{$gt":5}}}}},
{"$unwind":"$v.seconds"},
{"$project":{"data":"$v.seconds.data"}}]
)
Korzystanie z drugiej struktury
db.col.aggregate(
[{"$match":{"v.data":{$elemMatch:{"field1":{$gt":2},"field3":{$gt":5}}}}},
{"$unwind":"$v"},
{"$match":{"v.data.field1":{"$gt":2},"v.data.field3":{"$gt":5} }},
{"$project":{"data":"$v.data"}}]
)
Aktualizacja Mongo 3.6
$match
z $expr
który akceptuje wyrażenie agregacji.
$gt > 0
- wyrażenie agregujące, aby sprawdzić, gdzie suma wszystkich pasujących kryteriów sekund w ciągu minuty jest większa niż 0
$objectToArray
aby przekonwertować nazwane klucze na parę klucz-wartość, po której następuje $filter
sekundy na kryteriach wejściowych i liczbie wyjściowej pasującego rekordu sekund.
db.testcol.aggregate(
{"$match":{
"$expr":{
"$gt":[
{"$sum":{
"$map":{
"input":{"$objectToArray":"$v"},
"as":"secondsofminute",
"in":{
"$size":{
"$filter":{
"input":{"$objectToArray":"$$secondsofminute.v"},
"as":"seconds",
"cond":{"$gt":["$$seconds.v.field2",2]}
}
}
}
}
}},
0]
}
}})
Mongo Update 3.4 - Zastąp $expr
z $redact
db.col.aggregate(
{"$redact":{
"$cond":{
"if":{
"$gt":[
{"$sum":{
"$map":{
"input":{"$objectToArray":"$v"},
"as":"secondsofminute",
"in":{
"$size":{
"$filter":{
"input":{"$objectToArray":"$$secondsofminute.v"},
"as":"seconds",
"cond":{"$gt":["$$seconds.v.field2",2]}
}
}
}
}
}},
0]
},
"then":"$$KEEP",
"else":"$$PRUNE"
}
}})