MongoDB
 sql >> Baza danych >  >> NoSQL >> MongoDB

Mongo / Mongoose — agregowanie według daty

Dobrym podejściem byłoby rozbicie zbiorczego potoku na kilka etapów w celu obliczenia agregatów dla każdej grupy, tj. agregatów rocznych, miesięcznych i tygodniowych.

Podjąłem słabą próbę wygenerowania wspomnianego potoku, ale nie jestem pewien, czy tego właśnie szukasz, ale mógłbym dać ci kilka wskazówek do rozwiązania, jeszcze lepszego, ale optymalnego. Być może ktoś inny mógłby udzielić lepszej odpowiedzi.

Rozważ następujące nieprzetestowane potok:

db.statements.aggregate([
    {
        "$group": {
            "_id": {
                "name": "$name",
                "year": { "$year": "$date" },
                "month": { "$month": "$date" },
                "week": { "$week": "$date" }
            },
            "total": { "$sum": "$amount" }
        }
    },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "year": "$_id.year"
            },
            "YearlySpends": { "$push": "$total" },
            "totalYearlyAmount": { "$sum": "$total" },
            "data": { "$push": "$$ROOT" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "month": "$data._id.month"
            },
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$push": "$data.total" },
            "totalMonthlyAmount": { "$sum": "$data.total" },
            "data": { "$push": "$data" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "week": "$data._id.week"
            },
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$first": "$MonthlySpends" },
            "totalMonthlyAmount": { "$first": "$totalMonthlyAmount" },
            "WeeklySpends": { "$push": "$data.total" },
            "totalWeeklyAmount": { "$sum": "$data.total" },
            "data": { "$push": "$data" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": "$data._id",
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$first": "$MonthlySpends" },
            "totalMonthlyAmount": { "$first": "$totalMonthlyAmount" },
            "WeeklySpends": { "$first": "$WeeklySpends" },
            "totalWeeklyAmount": { "$first": "$totalWeeklyAmount" }
        }
    }
])

Przykładowe wyjście

/* 1 */
{
    "_id" : {
        "name" : "Tesco",
        "year" : 2017,
        "month" : 3,
        "week" : 11
    },
    "YearlySpends" : [ 
        -3.3
    ],
    "totalYearlyAmount" : -3.3,
    "MonthlySpends" : [ 
        -3.3
    ],
    "totalMonthlyAmount" : -3.3,
    "WeeklySpends" : [ 
        -3.3
    ],
    "totalWeeklyAmount" : -3.3
}

/* 2 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 4,
        "week" : 17
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -33.3
    ],
    "totalMonthlyAmount" : -33.3,
    "WeeklySpends" : [ 
        -33.3
    ],
    "totalWeeklyAmount" : -33.3
}

/* 3 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 3,
        "week" : 12
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -3.3, 
        -26.3
    ],
    "totalMonthlyAmount" : -29.6,
    "WeeklySpends" : [ 
        -3.3
    ],
    "totalWeeklyAmount" : -3.3
}

/* 4 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 3,
        "week" : 11
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -3.3, 
        -26.3
    ],
    "totalMonthlyAmount" : -29.6,
    "WeeklySpends" : [ 
        -26.3
    ],
    "totalWeeklyAmount" : -26.3
}

/* 5 */
{
    "_id" : {
        "name" : "Sky",
        "year" : 2017,
        "month" : 3,
        "week" : 9
    },
    "YearlySpends" : [ 
        -63.3
    ],
    "totalYearlyAmount" : -63.3,
    "MonthlySpends" : [ 
        -63.3
    ],
    "totalMonthlyAmount" : -63.3,
    "WeeklySpends" : [ 
        -63.3
    ],
    "totalWeeklyAmount" : -63.3
}

/* 6 */
{
    "_id" : {
        "name" : "Amazon",
        "year" : 2017,
        "month" : 3,
        "week" : 12
    },
    "YearlySpends" : [ 
        -61.3
    ],
    "totalYearlyAmount" : -61.3,
    "MonthlySpends" : [ 
        -61.3
    ],
    "totalMonthlyAmount" : -61.3,
    "WeeklySpends" : [ 
        -61.3
    ],
    "totalWeeklyAmount" : -61.3
}

AKTUALIZACJA

Jeśli chcesz uwzględnić filtry w operacji agregacji, sugeruję użycie $match zapytanie jako pierwszy etap potoku. Jeśli jednak istnieje początkowy $match krok, poprzednie kroki zostaną nieznacznie zmienione, ponieważ będziesz agregować przefiltrowane wyniki, co bardzo różni się od agregowania wszystkich dokumentów jako całości na początku, a następnie zastosowania filtru do wyników.

Jeśli masz wziąć filtr-najpierw-agregacja trasy, rozważ uruchomienie operacji agregującej, która używa $match jako pierwszy krok, który filtruje dokumenty według dostawcy, a następnie poprzedzający $redact krok potoku, aby dalej filtrować dokumenty w części miesiąca pola daty, a reszta to $group etapy:

Statements.aggregate([
    { "$match": { "name": req.params.vendor } },
    {
        "$redact": {
            "$cond": [
                { "$eq": [{ "$month": "$date" }, parseInt(req.params.month) ]},
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    },
    .....
    /*
        add the remaining pipeline steps after
    */
], function(err, data){
    if (err) throw err;
    console.log(data);
})

Jeśli masz wziąć udział w filtrze grupowym trasa, filtr będzie znajdował się po ostatnim potoku, który daje zgrupowany wynik, ale zostanie zastosowany do różnych pól, ponieważ dokumenty w tej części strumienia będą się różnić od oryginalnego schematu.

Ta trasa nie jest skuteczna, ponieważ rozpoczynasz operację agregacji ze wszystkimi dokumentami w kolekcji, a następnie filtrujesz:

Statements.aggregate([
    .....
    /*
        place the initial pipeline steps from 
        the original query above here
    */
    .....
    { 
        "$match": { 
            "_id.name": req.params.vendor,
            "_id.month": parseInt(req.params.month)
        } 
    }
], function(err, data){
    if (err) throw err;
    console.log(data);
})

W przypadku wielu parametrów filtra daty $redact operator byłby

{
    "$redact": {
        "$cond": [
            {
                "$and": [
                     { "$eq": [{ "$year": "$date" },  parseInt(req.params.year)  ]},
                     { "$eq": [{ "$month": "$date" }, parseInt(req.params.month) ]},
                     { "$eq": [{ "$week": "$date" },  parseInt(req.params.week)  ]}
                ]
            },
            "$$KEEP",
            "$$PRUNE"
        ]
    }
}



  1. Redis
  2.   
  3. MongoDB
  4.   
  5. Memcached
  6.   
  7. HBase
  8.   
  9. CouchDB
  1. MongoDB $i operator potoku agregacji

  2. Mongo:znajdź poddokument bez notacji kropkowej

  3. Proaktywne monitorowanie MongoDB (kąt programisty/doradców)

  4. Odpytywanie obiektów osadzonych w Mongoid/rails 3 (operatory Lower than, Min. i sortowanie)

  5. Mongoose - znajdź ostatnią wiadomość od każdego użytkownika