Prostą prognozę można utworzyć za pomocą REGR funkcje regresji liniowej.
--Ordinary least squares forecast for each customer for the next year.
select
cust_id,
max(year) +1 forecast_year,
-- y = mx+b
regr_slope(revenue, year)
* (max(year) + 1)
+ regr_intercept(revenue, year) forecasted_revenue
from customer_data
group by cust_id;
CUST_ID FORECAST_YEAR FORECASTED_REVENUE
------- ------------- ------------------
1 2018 730868
2 2018 50148
4 2018 7483
3 2018 -9920
Poniżej znajduje się przykładowy schemat. Możesz też użyć tego SQLFiddle .
create table customer_data
(
cust_id number,
year number,
revenue number
);
insert into customer_data
select 1, 2016, 679862 from dual union all
select 1, 2017, 705365 from dual union all
select 2, 2016, 51074 from dual union all
select 2, 2017, 50611 from dual union all
select 3, 2016, 190706 from dual union all
select 3, 2017, 90393 from dual union all
select 4, 2016, 31649 from dual union all
select 4, 2017, 19566 from dual;
REGR
funkcja zajmuje się parami liczb, nie rozumie reguł biznesowych, takich jak „przychód nie może być mniejszy niż 0”. Jeśli chcesz ograniczyć prognozy, aby zawsze pozostawały na poziomie 0 lub powyżej, CASE
wyrażenie może pomóc:
--Forecasted revenue, with minimum forecast of 0.
select cust_id, forecast_year,
case when forecasted_revenue < 0 then 0 else forecasted_revenue end forecasted_revenue
from
(
--Ordinary least squares forecast for each customer for the next year.
select
cust_id,
max(year) +1 forecast_year,
-- y = mx+b
regr_slope(revenue, year)
* (max(year) + 1)
+ regr_intercept(revenue, year) forecasted_revenue
from customer_data
group by cust_id
);
CUST_ID FORECAST_YEAR FORECASTED_REVENUE
------- ------------- ------------------
1 2018 730868
2 2018 50148
4 2018 7483
3 2018 0